Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 11(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535861

RESUMO

The significance of Trypanosoma equiperdum as the causative agent of dourine cannot be understated, especially given its high mortality rate among equids. International movement of equids should be subject to thorough health checks and screenings to ensure that animals are not infected with Trypanosoma equiperdum. This involves the implementation of quarantine protocols, testing procedures, and the issuance of health certificates to certify the health status of the animals. Three proteins, the peptidyl-prolyl cis-trans isomerase (A0A1G4I8N3), the GrpE protein homolog (A0A1G4I464) and the transport protein particle (TRAPP) component, putative (A0A1G4I740) (UniProt accession numbers SCU68469.1, SCU66661.1 and SCU67727.1), were identified as unique to T. equiperdum by bioinformatics analysis. The proteins were expressed as recombinant proteins and tested using an indirect ELISA and immunoblotting test with a panel of horse positive and negative sera for dourine. The diagnostic sensitivity, specificity and accuracy of the i-ELISAs were 86.7%, 53.8% and 59.0% for A0A1G4I8N3; 53.3%, 58.7% and 57.9% for A0A1G4I464; and 73.3%, 65.0% and 66.3% for A0A1G4I740, respectively, while the diagnostic sensitivity, specificity and accuracy of immunoblotting were 86.7%, 92.5% and 91.6% for A0A1G4I8N3; 46.7%, 81.3% and 75.8% for A0A1G4I464; and 80.0%, 63.8% and 66.3% for A0A1G4I740. Among the three proteins evaluated in the present work, A0A1G4I8N3 provided the best results when tested by immunoblotting; diagnostic application of this protein should be further investigated using a greater number of positive and negative sera.

2.
Virology ; 592: 109997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324940

RESUMO

Here we investigated the virulence properties of a unique cell-adapted SARS-CoV-2 mutant showing a ten-amino acid deletion encompassing the furin cleavage site of the spike protein (Δ680SPRAARSVAS689; Δ680-689-B.1) in comparison to its parental strain (wt-B.1) and two Delta variants (AY.122 and AY.21) of concern. After intranasal inoculation, transgenic K18-hACE2 mice were monitored for 14 days for weight change, lethality, and clinical score; oral swabs were daily collected and tested for the presence of N protein subgenomic RNA. At 3 and 7 dpi mice were also sacrificed and organs collected for molecular, histopathological, and immune response profile investigations. The Δ680-689-B.1-infected mice exhibited reduced shedding, lower virulence at the lung level, and milder pulmonary lesions. In the lung, infection with Δ680-689-B.1 was associated with a significant lower expression of some cytokines at 3 dpi (IL-4, IL-27, and IL-28) and 7 dpi (IL-4, IL-27, IL-28, IFN-γ and IL-1α).


Assuntos
COVID-19 , Interleucina-27 , Melfalan , gama-Globulinas , Camundongos , Animais , Furina/genética , Interleucina-4 , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Virulência , Camundongos Transgênicos , Modelos Animais de Doenças
3.
Microorganisms ; 11(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37764006

RESUMO

Canine brucellosis caused by Brucella canis, is an infectious disease affecting dogs and wild Canidae. Clinical diagnosis is challenging, and laboratory testing is crucial for a definitive diagnosis. Various serological methods have been described, but their accuracy is uncertain due to limited validation studies. The present study aimed to evaluate the performances of three serological tests for the diagnosis of B. canis in comparison with bacterial isolation (gold standard), in order to establish a protocol for the serological diagnosis of canine brucellosis. A panel of sera from naturally infected dogs (n = 61), from which B. canis was isolated, and uninfected dogs (n = 143), negative for B. canis isolation, were tested using microplate serum agglutination (mSAT), complement fixation performed using the Brucella ovis antigen (B. ovis-CFT), and a commercial immunofluorescence assay (IFAT). The sensitivity and specificity of the three serological methods were, respectively, the following: 96.7% (95% CI 88.8-98.7%) and 92.3 (95% CI 86.7-95.1%) for mSAT; 96.7% (95% CI 88.8-98.7%) and 96.5 (95% CI 92.1-98.2%) for B. ovis-CFT; 98.4% (95% CI 91.3-99.4%) and 99.3 (95% CI 96.2-99.8%) for IFAT. The use in of the three methods in parallel, combined with bacterial isolation and molecular methods, could improve the diagnosis of the infection in dogs.

4.
Microorganisms ; 11(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630638

RESUMO

Brucella RB51 is a live modified vaccine. Its use in water buffalo has been proposed using a vaccination protocol different to that used for cattle, but knowledge of the long-term effects of RB51 vaccination in this species remains incomplete. The aim of the study was to evaluate the safety and kinetics of antibody responses in water buffaloes vaccinated according to the protocol described for the bovine species in the WOAH Manual, modified with the use of a triple dose. Water buffaloes were vaccinated with the vaccine RB51. A booster vaccination was administered at 12 months of age. When turning 23-25 months old, female animals were induced to pregnancy. RB51-specific antibodies were detected and quantified using a CFT based on the RB51 antigen. Vaccinated animals showed a positive serological reaction following each vaccine injection, but titers and the duration of the antibody differed among animals. For 36 weeks after booster vaccination, the comparison of CFT values between vaccinated and control groups remained constantly significant. Afterwards, antibody titers decreased. No relevant changes in antibody response were recorded during pregnancy or lactation. In conclusion, results indicated that the vaccination schedule applied is safe and allows for vaccinated and unvaccinated controls to be discriminated between for up to 8 months after booster vaccination.

5.
Pathogens ; 11(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36297209

RESUMO

SARS-CoV-2 has been shown to lose the furin polybasic cleavage site (FCS) following adaptation on cell culture. Deletion occurring in this region, which may include also the FCS flanking regions, seem not to affect virus replication in vitro; however, a chimeric SARS-CoV-2 virus without the sole FCS motif has been associated with lower virulence in mice and lower neutralization values. Moreover, SARS-CoV-2 virus lacking the FCS was shed to lower titers from experimentally infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. In this study, we investigated the replication kinetics and cellular tropism of a SARS-CoV-2 isolate carrying a 10-amino acid deletion in the spike protein spanning the FCS in lung ex vivo organ cultures of mink. Furthermore, we tested the neutralization capabilities of human convalescent SARS-CoV-2 positive serum samples against this virus. We showed that this deletion did not significantly hamper neither ex vivo replication nor neutralization activity by convalescent serum samples. This study highlights the importance of the preliminary phenotypic characterization of emerging viruses in ex vivo models and demonstrates that mink lung tissues are permissive to the replication of a mutant form of SARS-CoV-2 showing a deletion spanning the FCS. Notably, we also highlight the need for sequencing viral stocks before any infection study as large deletions may occur leading to the misinterpretation of results.

6.
Microorganisms ; 10(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014064

RESUMO

Abortion in livestock is a public health burden, and the cause of economic losses for farmers. Abortion can be multifactorial, and a deep diagnostic investigation is important to reduce the spread of zoonotic disease and public health prevention. In our study, a multidisciplinary investigation was conducted to address the cause of increased abortion and lamb mortality on a farm, which detected a co-infection of Listeria monocytogenes and Toxoplasma gondii. Hence, it was possible to conclude that this was the reason for a reduced flock health status and the cause of an increased abortion rate. Furthermore, the investigation work and identification of the L. monocytogenes infection root allowed the reduction of economic loss.

7.
Vet Microbiol ; 252: 108933, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278734

RESUMO

There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.


Assuntos
Técnicas de Cultura de Órgãos , Sistema Respiratório/virologia , Ruminantes/virologia , SARS-CoV-2/fisiologia , Tropismo Viral , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , Bovinos/virologia , Especificidade de Hospedeiro , SARS-CoV-2/genética , Ovinos/virologia , Suínos/virologia
8.
Prev Vet Med ; 176: 104923, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32066029

RESUMO

The acceptance of serology data instead of challenge for market release of new batches of commercial vaccine is under evaluation by regulatory agencies in order to reduce the use of animals and costs for manufacturers. In this study two vaccines for Bluetongue virus serotype 8 were submitted to quality controls required by the European Pharmacopoeia and tested on sheep in comparison with a commercial inactivated vaccine. Body temperature, antibody titres and viraemia of vaccinated and controls sheep were recorded. In addition IL4 and IFNγ in sera and supernatant derived from in vitro stimulation of blood cells were also quantified using two commercial ELISA kit. The outer-capsid protein VP2 contained in vaccine formulations was quantified using a home-made capture-ELISA. Results obtained indicates that in-lab evaluation of cell-mediated and humoral immune response are useful parameters to predict the efficacy of BTV inactivated vaccines avoiding the challenge phase required to release new batches of vaccines with proven clinical efficacy and safety. The correlation observed between serology data and VP2 protein concentration of final product could be useful in-process control to predict if a new vaccine batch of BTV must be discarded or released to the market.


Assuntos
Alternativas aos Testes com Animais/métodos , Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/farmacologia , Animais , Controle de Qualidade , Ovinos , Carneiro Doméstico , Vacinas de Produtos Inativados/farmacologia
9.
Vet Parasitol ; 261: 86-90, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30253855

RESUMO

Dourine is a parasitic venereal disease of equines caused by T. equiperdum. Humoral antibodies are found in infected animals, but diagnosis of dourine must include history, clinical, and pathological findings in addition to serology. Complement Fixation Test (CFT) is the Office International des Epizooties (OIE) recommended test for international trade; however, some uninfected equines may give inconsistent or nonspecific reactions in CFT due to the anticomplementary effects of their sera. In this study an Indirect Enzyme Linked Immunosorbent Assay (iELISA) was developed. This test could be used to confirm positive serological cases of dourine or to solve inconclusive results obtained by CFT, in addition to Indirect Fluorescent Antibody Test (IFAT) and a Chemiluminescent Immunoblotting Assay (cIB). Six-hundred-and-six CFT negative sera and 140 sera positive to CFT and IFAT were tested by iELISA using OVI T. equiperdum as antigen. Results were expressed as percentage of positivity and the optimum cut-off value determined sensitivity and specificity of 100%. All positive sera, tested by cIB, were confirmed as positive. Additionally, twenty seven sera, low-positive at CFT and negative by IFAT, were tested with iELISA and cIB. All samples resulted negative by cIB and one of them was positive in ELISA. Our results suggest that iELISA and cIB may be used as alternative or supplementary confirmatory tests whenever other recommended serological methods are inconclusive or doubtful.


Assuntos
Mal do Coito (Veterinária)/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Cavalos/diagnóstico , Trypanosoma/isolamento & purificação , Animais , Mal do Coito (Veterinária)/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Doenças dos Cavalos/parasitologia , Cavalos
10.
Front Vet Sci ; 5: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556505

RESUMO

The diagnosis of dourine can be difficult because the clinical signs of this disease in horses are similar to those of surra, caused by Trypanosoma evansi. Moreover, T. equiperdum and T. evansi are closely related and, so far, they cannot be distinguished using serological tests. In a previous work, the T. equiperdum protein pattern recognized by antibodies from dourine-infected horses and the humoral immune response kinetics were investigated by immunoblotting assay; a total of 20 sera from naturally and experimentally infected horses and from healthy animals were tested. Immunoblotting analysis showed that antibodies from infected horses specifically bind T. equiperdum low molecular weight proteins (from 16 to 35 kDa), which are not recognized by antibodies from uninfected horses. In this work, we tested other 615 sera (7 from naturally infected horses and 608 sera from healthy horses and donkeys): results confirmed the data obtained previously. In addition, six SDS-PAGE bands with molecular weight ranging from 10 to 37 kDa were analyzed by mass spectrometry, in order to identify immunogenic proteins that could be used as biomarkers for the diagnosis of dourine. A total of 167 proteins were identified. Among them, 37 were found unique for T. equiperdum. Twenty-four of them could represent possible candidate diagnostic antigens for the development of serological tests specific for T. equiperdum.

11.
Microb Cell Fact ; 16(1): 94, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545467

RESUMO

BACKGROUND: Clostridium perfringens is an important animal and human pathogen that can produce more than 16 different major and minor toxins. The beta-2 minor toxin (CPB2), comprising atypical and consensus variants, appears to be involved in both human and animal enterotoxaemia syndrome. The exact role of CPB2 in pathogenesis is poorly investigated, and its mechanism of action at the molecular level is still unknown because of the lack of specific reagents such as monoclonal antibodies against the CPB2 protein and/or the availability of a highly purified antigen. Previous studies have reported that purified wild-type or recombinant CPB2 toxin, expressed in a heterologous system, presented cytotoxic effects on human intestinal cell lines. Undoubtedly, for this reason, to date, these purified proteins have not yet been used for the production of monoclonal antibodies (MAbs). Recently, monoclonal antibodies against CPB2 were generated using peptides designed on predicted antigenic epitopes of this toxin. RESULTS: In this paper we report, for the first time, the expression in a baculovirus system of a deleted recombinant C-terminal 6xHis-tagged atypical CPB2 toxin (rCPB2Δ1-25-His6) lacking the 25 amino acids (aa) of the N-terminal putative signal sequence. A high level of purified recombinant rCPB2Δ1-25-His6 was obtained after purification by Ni2+ affinity chromatography. The purified product showed no in vitro and in vivo toxicity. Polyclonal antibodies and twenty hybridoma-secreting Mabs were generated using purified rCPB2Δ1-25-His6. Finally, the reactivity and specificity of the new antibodies were tested against both recombinant and wild-type CPB2 toxins. CONCLUSIONS: The high-throughput of purified atoxic recombinant CPB2 produced in insect cells, allowed to obtain monoclonal and polyclonal antibodies. The availability of these molecules could contribute to develop immunoenzymatic methods and/or to perform studies about the biological activity of CPB2 toxin.


Assuntos
Anticorpos/metabolismo , Toxinas Bacterianas/genética , Baculoviridae/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Anticorpos Monoclonais/biossíntese , Toxinas Bacterianas/isolamento & purificação , Baculoviridae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
12.
J Immunoassay Immunochem ; 36(3): 253-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24905982

RESUMO

Monoclonal antibodies (MAbs) against horse IgG were produced by immunizing Balb/c mice with purified horse IgG and were characterized in indirect ELISA versus purified immunoglobulins from donkey, cow, buffalo, sheep, pig, and chicken. Three MAbs (1B10B6C9, 1B10B6C10, 1B10B6E9) reacted only with horse and donkey IgG and IgM and, in western blotting, were specific for the Fc fragment of equine IgG. MAb 1B10B6E9 was used in chemiluminescent immunoblotting assay for the diagnosis of dourine and in indirect immunofluorescence assay (IFA) for the diagnosis of African horse sickness and dourine.


Assuntos
Doença Equina Africana/sangue , Doença Equina Africana/diagnóstico , Anticorpos Monoclonais Murinos/química , Mal do Coito (Veterinária)/sangue , Mal do Coito (Veterinária)/diagnóstico , Imunoglobulina G/sangue , Doença Equina Africana/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Mal do Coito (Veterinária)/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Cavalos , Imunoglobulina G/imunologia , Camundongos
13.
Biochem J ; 457(3): 463-72, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24215562

RESUMO

Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.


Assuntos
Amidoidrolases/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Modelos Biológicos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Amidoidrolases/genética , Animais , Linhagem Celular , Detergentes/química , Dimerização , Endocanabinoides/metabolismo , Hidrólise , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estabilidade Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...